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Abstract—Many signal processing problems are tackled by
filtering the signal for subsequent feature classification or regres-
sion. Both steps are critical and need to be designed carefully
to deal with the particular statistical characteristics of both
signal and noise. Optimal design of the filter and the clas-
sifier are typically aborded in a separated way, thus leading
to suboptimal classification schemes. This paper proposes an
efficient methodology to learn an optimal signal filter and a
support vector machine (SVM) classifier jointly. In particular,
we derive algorithms to solve the optimization problem, prove its
theoretical convergence, and discuss different filter regularizers
for automated scaling and selection of the feature channels. The
latter gives rise to different formulations with the appealing
properties of sparseness and noise-robustness. We illustrate the
performance of the method in several problems. First, linear
and nonlinear toy classification examples, under the presence
of both Gaussian and convolutional noise, show the robustness
of the proposed methods. The approach is then evaluated on
two challenging real life datasets: BCI time series classification
and multispectral image segmentation. In all the examples, large
margin filtering shows competitive classification performances
while offering the advantage of interpretability of the filtered
channels retrieved.

Index Terms—Sequence labeling, time series classification,
large margin methods, support vector machine (SVM).

I. INTRODUCTION

Sequence labeling is a classical pattern recognition problem
in which the goal is to assign a label for every sample of a
signal (or pixel of an image) while taking into account the
sequentiality (or vicinity) of the samples. The field is very
vast and typically arises in many signal recognition problems,
such as Automatic Speech Recognition (ASR) [1], Brain
Computer Interfaces (BCI) [2], or pathology discrimination
from biosignals [3]. For instance, speaker diarization aims
at recognizing which speaker is talking along time. Another
example is the recognition of mental states from Electro-
Encephalographic (EEG) signals. These mental states are then
mapped into commands for a computer (virtual keyboard,
mouse) or a mobile robot, thus creating the need for sam-
ple labeling algorithms [2], [4]. Electrocardiographic (ECG)
signals are used to diagnose the presence or absence of a
given pathology in advance, such as particular arrhythmia or
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Rouvray. E-mail: {remi.flamary,benjamin.labbe,alain.rakoto}@insa-rouen.fr,
http://remi.flamary.com

DT was with the Image Processing Laboratory (IPL), Universitat de
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fibrillation episodes [5]. Signal sequence labeling is sometimes
referred to as time series (predictive) classification [6].

A widely used approach for performing sequence labeling
consists in using Hidden Markov Models (HMMs) [7]. HMMs
are probabilistic models that may be used for sequence decod-
ing of discrete state observations. In the case of continuous ob-
servations such as signal samples or vector features extracted
from the signal, Continuous Density HMMs are considered
[7]. When using HMM for sequence decoding, one needs to
know the conditional probability of the observations per hid-
den state (class), which is usually obtained through Gaussian
Mixtures (GM) [7]. However, this kind of model leads to poor
discrimination in high dimensional spaces, and recent works
have shown that decoding accuracy may be improved by using
discriminative models [8], [9]. Note that HMM require the
use of the Viterbi algorithm in order to obtain the optimal
sequence. However, such an off-line decoding supposes that
the complete sequence of observations is available, situation
that seldom occurs. For instance in BCI applications, a real
time decision is often needed [2], [4], which precludes the
use of standard Viterbi decoding. In these cases, a strategy
which considers local Viterbi algorithm may be used for online
decision [10]. Another possible online approach is to classify
the current sample and the preceding decoded labels directly.
These methods are defined in [11] as greedy decoding and
permit the use of higher-order HMM taking into account
several preceding states.

When the sequence labeling has to be performed on a
measured signal, the efficiency of the classifier model highly
depends on the type of noise induced by the measurement.
This is why in most applications, the acquired signal is first
preprocessed by filtering before being fed to a classifier. Even
though this approach to sequence labeling typically yields
good results, the crucial step of selecting and designing the
filter is very often time consuming, needs prior knowledge
and is scenario-dependent. Often, an optimal filter in the least-
squares sense may not be optimal in terms of classification
accuracy. Moreover, in many applications the filter is restricted
to particular noise sources (typically Gaussian), while the
classifier is not commonly adapted to the non-i.i.d. nature of
the signals. HMMs for instance adapt well to additive noise
such as Gaussian noise, but they cannot take into account a
time-lag between the labels and the discriminative features. If
the labels and the features are not re-synchronized, some of
the learning observations are mislabeled, leading to a biased
density estimation per class. This kind of dephasing is a clas-
sical simple case of convolutional noise (e.g convolution by a
delayed Dirac’s delta). This is a problem in BCI applications
where the interesting information is not always synchronized
with the labels. For instance, since the neural activity precedes
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the actual movement, authors in [12] showed the need for
applying delays to the signal. These delays are typically
selected heuristically or through cross-validation strategies.
Another example is found in the interaction with a computer
using multi-modal acquisitions (e.g. EEG and EMG). Since
each modality has its own time-lag with respect to neural
activity [13], it may be difficult to manually synchronize
them. Better adaptation could be obtained by learning the
“best” time-lag to apply to each channel. Note that correcting
time-lags boils down to applying filters in the same way as
denoising a signal by an ad hoc filtering.

In the general case, the labeling problem is not restricted to
unidimensional signals. A typical multidimensional problem
that involves signal sequence labeling is segmentation by
pixel labeling [14]–[16]. Images, like time series and data
sequences, are not i.i.d. data. Natural images are smooth, au-
tocorrelation functions are broad, and have a 1/f band-limited
spectrum. In the case of color images, the correlation between
the tristimulus values of the natural colors is high. Such a
characterization is more difficult in the case of multi- and
hyper-spectral images acquired by satellite sensors. Although
images are not i.i.d. data, image segmentation algorithms are
commonly applied either to single pixels (hence obviating the
spatial correlation), to low-pass filtered pixels (imposing an
ad hoc spatial arrangement), or to small patches (assuming
a spatial extent of pixel relations). In remote sensing image
processing, spatial filters for taking into account neighbor-
ing relations have been addressed through textural [17] and
morphological filters [18]–[20]. The extracted features are
then fed to the classifier. Again, both processes are optimized
separately, and then no guarantee of optimal performance is
attained.

In this paper, we propose to learn the filter directly from
samples, instead of using a fixed filter as a preprocessing
stage. This approach may help in adapting to signal and
noise characteristics of each channel in addition to alleviate
the time-lag misadjustment. The idea of jointly optimizing a
filter and a classifier dates back to the nineties within the
field of artificial neural networks for time series processing.
Two methods are worth mentioning. The convolutional neu-
ral networks [21] are particular multilayer perceptrons for
sequential classification of handwritten and machine-printed
characters. Another example is the focused-gamma neural
network [22], [23], which includes in the first input layer a
linear gamma-filter, that is an infinite impulse response (IIR)
filter with controlled stability and memory depth. In both
cases, network and filter weights are adjusted by standard
backpropagation algorithms. In [24], we proposed a method
to learn a large margin filtering for linear SVM classification.
Here, we extend this preliminary work by formalizing the
problem of large margin filter learning. The idea is to learn
a Finite Impulse Response (FIR) filter for each channel of
the signal jointly with a classifier. This approach can adapt
to different properties in the channels and the learned filter
corresponds to a convolution maximizing the margin between
classes. Since the filter is accessible and visualizable, it can be
interpreted in both the temporal and the frequency domains.
We also extend the method to the non-linear case and propose

different regularization types to promote channel scaling or
selection.

The remainder of the paper is organized as follows. In
Section II, we formalize the problem and review traditional
approaches such as filteredsample classification and time-
window classification. In Section III, we introduce the problem
of large margin filtering to deal with the limitations observed
when considering non-i.i.d. signals. We also discuss its the-
oretical convergence properties, as well as its computational
complexity and the effect of different regularization for the fil-
tering matrix. In Section IV, the different proposed approaches
are tested on three classification scenarios. First, a toy dataset
accounting for both additive and convolutional noise. Then, a
real-life BCI classification problem and a multispectral image
segmentation problem are considered. Section V concludes
the paper.

II. SAMPLE LABELING PROBLEM

In this section, we formally state the problem of sample
labeling. Then, we define the filtering of a multi-dimensional
signal and the SVM classifier for filtered samples. The prob-
lem is stated for the general case using mapping functions in
appropriate reproducing kernel Hilbert spaces and both linear
and nonlinear problems are discussed.

A. Problem definition

We want to predict a sequence of labels either from a multi-
channel signal or from multi-channel features extracted from
that signal by learning from examples. We consider that the
training samples are gathered in a matrix X ∈ Rn×d contain-
ing d channels and n samples. Xi,j is the value of channel j
for the ith sample (Xi,·). The vector y ∈ {−1, 1}n contains
the class for each sample. Later on, multiclass problems will
be handled by means of pairwise binary classifiers.

In order to reduce noise in the samples or variability in the
features, a usual approach is to filter X before learning the
classifier. In the literature, a single filter is typically used for all
channels although there is no reason for believing that such a
single filter will lead to an optimal classification performance.
Moreover, assuming an explicit filter structure may not fit
the underlying system that generated the data. The Savitzky-
Golay [12] or the gamma filters [25] are examples of structures
commonly used for noise reduction before classification. Let
us define the filter applied to X by the matrix F ∈ Rf×d.
Each column of F is a filter for the corresponding channel
in X and f is the size of the Finite Impulse Response (FIR)
filters.

We define the filtered data matrix X̃ by:

X̃i,j =

f∑
m=1

Fm,j Xi+1−m+n0,j = Xi,j ⊗ F·,j

where the sum is a uni-dimensional convolution (⊗) of each
channel by the filter in the appropriate column of F. Here, n0
is the delay of the filter: for instance n0 = 0 corresponds to a
causal filter and n0 = f/2 corresponds to a non-causal filter
centered on the current sample. Figure 1 presents an example
of signal X and filtered signal X̃.
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Fig. 1. Data matrix X (top), filtered matrix X̃ (bottom) and time-window
X (light gray) with n0 = 0, d = 3 and f = 5.

In this work, we make the hypothesis that the class labels of
the samples vary at a slow rate. This means that the signal is
supposed to be composed of several large segments of signals
from the same class. In this context, we aim at learning a
filter that enhances the discrimination between the training
examples. The filter size does not need to be accurately
chosen, since the regularization term used in our optimization
framework tends to downweight irrelevant filter coefficients.
We will discuss this property later in Section III-E and in the
experimental Section IV-A.

B. SVM for filtered samples

To improve the classification rate, one may filter the chan-
nels in X in order to reduce noise pertubation. The usual
filter in the case of high frequency noise is the averaging filter
defined by Fi,j = 1/f, ∀i ∈ {1, . . . , f} and j ∈ {1, . . . , d},
while n0 is selected depending on the problem at hand (i.e.
n0 = 0 for a causal filtering or n0 > 0 for a non-causal
filtering). In the following, the method which considers a
moving average filter for signal preprocessing followed by a
SVM classifier is denoted as Avg-SVM.

Once the filtering is chosen, we can learn a SVM sample
classifier on the filtered samples by solving the optimization
problem:

min
g

{
1

2
‖g‖2H +

C

n

n∑
i=1

H(yi, g(X̃i,·))

}
(1)

where C is a regularization parameter, g(·) ∈ H is the
decision function in a Reproducing Kernel Hilbert Space H,
H(y, g(x)) = max(0, 1 − y · g(x))p is the Hinge loss to the
power of p (p = 1 corresponds to `1-SVM and p = 2 to `2-
SVM [26]). For the `1-SVM, one can solve the dual of this

problem:

max
α

{
JSVM (α,F) = −1

2

n,n∑
i=1,j=1

yiyjαiαjK̃i,j +

n∑
i=1

αi

}
(2)

s.t.
C

n
≥ αi ≥ 0 ∀i and

n∑
i=1

αiyi = 0

where αi are the dual variables and K̃ is the kernel matrix for
filtered samples. For reproducing kernel Hilbert space related
to the Gaussian kernel, K̃ is defined by:

K̃i,j = k(X̃i,·, X̃j,·) = exp

(
−‖X̃i,· − X̃j,·‖2

2σ2

)
(3)

= exp

(
−
∑d
m=1 ‖(Xi,m −Xj,m)⊗ F·,m‖2

2σ2

)
where σ is the kernel bandwidth. Note that for any FIR filter,
the resulting matrix K̃ is always positive definite as long as
the kernel k(·, ·) is positive definite. Indeed if k(·, ·) is a kernel
from X ×X to R and φ is a mapping from any X ′ to X then
k′(·, ·) = k(φ(·), φ(·)) is a positive definite kernel [26]. In our
case, since a FIR filter computes a linear combination of Rd
elements, and the Gaussian kernel takes elements from Rd,
the kernel defined equation (3) is positive definite

Once the classifier is learned, the decision function for a
new filtered (test) signal X̃′ at sample i is:

g(X̃′i,·) =

n∑
j=1

αjyjk(X̃′i,·, X̃j,·) + b (4)

with αj are the dual variables learned by solving (2) and b
represents the bias term. We show in the experiments section
that this approach may lead to improved performance over
the non-filtered approach. However, the method relies on the
(critical) choice of a filter structure which in turn depends
on prior information or user’s knowledge. We will show latter
that the filters learned when optimizing a large margin criterion
will naturally lead to better discriminative power.

C. Time-Window Classification

Another way for taking into account the sequentiality of
the samples, i.e. for handling the non-i.i.d. characteristics of
the time-series, is to classify time-windows of samples. Let us
define {Xi,·}ni=1 the set of samples obtained from a complete
time window of length f with n0 delay with each Xi,· ∈ Rf×d
being built by concatenating all samples Xi,· in the window
(see Fig. 1). This approach leads to the classification of data in
high dimension f × d, and one can learn a SVM classifier on
samples Xi,· using Equation (1). This method will be called
Win-SVM hereafter.

1) Linear Win-SVM: For learning a linear classifier on a
window of samples, the problem may be expressed as the
minimization of:

JW (W, w0) =
1

2
‖W‖2F +

C

n

n∑
i=1

H(y, gW (Xi,·)) (5)
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where ‖W‖2F =
∑
i,jW

2
i,j is the squared Frobenius norm of

W, C is a regularization term to be tuned and gW (Xi,·) is
the decision function defined for the ith time-window sample
as:

gW (Xi,·) =

f∑
m=1

d∑
j=1

Wm,jXi+1−m+n0,j + b

where W ∈ Rf×d and b ∈ R are the classification parameters.
In a nutshell, the problem defined in Equation (5) is simply a
SVM problem where examples are matrices instead of vectors.
Since we deal with a linear decision function, the problem
can be vectorized without loss of generality and linear SVM
solvers can be used for its resolution. Furthermore, by setting
p = 2, the objective function becomes differentiable so that
efficient algorithms such as the one proposed by Chapelle [27]
can be considered. Using that solver, Win-SVM complexity
is about O(nf2d2) which scales quadratically with the filter
dimension.

One of the interests of this time-windowing approach is that
the matrix W can be also interpreted as a large margin filter.
Indeed, the columns of the W matrix may be viewed as a
temporal filtering whereas the rows correspond to a spatial
filtering. However, this approach may still lead to sub-optimal
classification performance as previously reported for high-
dimensional signals [24]. As a matter of fact, the Frobenius
norm presents several shortcomings. The first one is that it
does not take into account the signal structure of the prob-
lem, which means that elements of matrix X are considered
independently to each other. Secondly, the Frobenius norm
does not promote sparsity which, in high-dimensional noisy
problems, may help selecting relevant coefficients of X.

While we have essentially focused on linear time-window
classifier, it is worthwhile to note that non-linear kernel based
SVM can also be used for classifying time-window {Xi,·}i
examples, as we will do in the experimental section. However,
in such a situation, we lose the interpretability of W as a
temporal/spatial filter.

2) Channel selection for linear Win-SVM: In some applica-
tions, only a subset of the acquired channels may be useful for
the classification task. This situation occurs for instance in BCI
problems, where discriminative features are usually spatially
localized. In these cases, selecting the relevant channels leads
to better interpretability and discrimination of the model. To
include an automated channel selection procedure in the time-
window classification problem given in (5), we propose to
consider a `1 − `2 mixed norm as a regularizer instead of the
Frobenius norm:

Ω1−2(W) =

d∑
j=1

(
f∑
i=1

W2
i,j

) 1
2

=

d∑
j=1

h
(
‖W.,j‖2

)
(6)

where h(u) = u
1
2 is the square root function. This mixed-

norm acts as an `2-norm on each single channel filter, while
the `1-norm of each channel filter energy will induce sparsity
over channels. The resulting optimization problem

min
W,b

{
Ω1−2(W) +

C

n

n∑
i=1

H(y, gW (Xi,·))

}

has a non-differentiable objective function even when p = 2,
which may pose some numerical difficulties. However, re-
cent research has considered this problem of hybrid objec-
tive functions, where one part has a Lipschitz gradient and
the other is convex but non-differentiable [28], [29]. Here
we straighforwardly applied the accelerated gradient method
(AGP) proposed by Chen et al. [30] since the squared hinge
loss is known to have Lipschitz gradient . For more details
about the algorithm, the reader is referred to [30].

III. LARGE MARGIN FILTERING

The classification of a time window is a way to handle
temporal information, but the classifier model still considers all
the time samples independently without taking into account the
signal structure. Performing a per-channel convolution is sensi-
ble here as it will take into account the channel structure and
extract the discriminative information spread along time. In
this section, we present the proposed optimization problem for
learning a large margin filtering as well as a general algorithm
to solve general-purpose sequence labeling problems. Then we
detail the implementation of the method, named KF-SVM and
provide some insights on the convergence properties of the
algorithm. Finally, we discuss the use of different regularizers
and the related works.

A. Optimization problem

Jointly learning the filtering matrix F and the classifier leads
to a filter maximizing the margin between the classes in the
feature space. The problem we want to solve is:

min
g,F

{
1

2
‖g‖2H +

C

n

n∑
i=1

H(yi, g(X̃i,·)) + λΩ(F)

}
(7)

where λ is a regularization parameter and Ω(·) represents a
differentiable regularization function of F. Note that the first
two terms of (7) reduces to a standard SVM for filtered
samples X̃ as defined in Equation (1). However, here F is
a variable to be minimized instead of being a fixed filter
structure. When jointly optimizing over the decision function g
and the filter F, the objective function is typically non-convex,
for instance when the kernel of the RKHS H is a Gaussian
kernel. Even in very simple situations, for instance the linear
case with j = 1 and f = 1, it can be shown that the problem
is non-convex.

However, the problem defined by (7) is convex w.r.t. g(·) for
any fixed filter F and in such a case, it boils down to solving
the SVM problem. Therefore, in order to take into account
this specific structure of the problem, we propose to solve the
problem through the following 2-stage approach :

min
F
{J(F)} = min

F
{J ′(F) + λΩ(F)} (8)

where J ′(F) is the objective value of the following primal
problem

J ′(F) = min
g

{
1

2
‖g‖2H +

C

n

n∑
i=1

H(yi, g(X̃i,·))

}
(9)
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Algorithm 1 KF-SVM CG solver
Set Fl,k = 1/f for k = 1, · · · , d and l = 1, · · · , f
Set i = 0, Set D0

F = 0
repeat
i = i+ 1
GiF ← gradient of J ′(F) + λΩ(F) w.r.t. F
β ← ‖Gi

F‖
2

‖Gi−1
F ‖2 (Fletcher and Reeves)

Di
F ← −GiF + βDi−1

F

(Fi, g∗)← Line-Search along Di
F

until Stopping criterion is reached

and its corresponding dual problem is

J ′(F) = max
C/n≥α≥0,

∑
iαiyi=0

{
JSVM (α,F)

}
(10)

where JSVM is defined by Equation (2) and g(·) by Equation
(4). Due to the strong duality of the SVM problem, J ′(·) can
be expressed in either his primal or dual form (see (9) and
(10)). The objective function J(·) defined in (8) is nonlinear
and non-convex. Nevertheless, Since, for any filter F, the
related SVM problem given by Equation (9) has an unique
solution g∗(·), according to [31], J ′(·) is differentiable w.r.t.
F. The gradient of J(·) can thus be computed in closed-form
as detailed in the sequel. Hence, since we have the gradient
of the nonlinear and non-convex objective function J(F), we
propose to solve problem (8) by means of a gradient-descent
method for unconstrained optimization.

B. KF-SVM Solver

For solving the optimization problem, we propose a con-
jugate gradient (CG) descent algorithm along F with a line
search method satisfying the Wolfe’s condition [32]. The
method is detailed in Algorithm 1, where β is the CG update
parameter and Di

F the descent direction for the ith iteration.
For the experimental results, we used the β proposed by
Fletcher and Reeves (see [32], [33] for more information). The
iterations in the algorithm may be stopped by two stopping
criteria: a threshold on the relative variation of J(F) or on
the norm of the variation of F.

Note that for each computation of J(F) in the line search,
the optimal g∗ is found by solving a SVM. A similar approach
has been considered for solving multiple kernel problems [34],
[35]. In these works, an objective function was minimized
with respect to kernel parameters (kernel weight in [34] or
bandwidth in [35]) using a gradient descent algorithm.

Instead of solving problem (7) through a min-max approach,
we could have considered a gradient descent approach on joint
parameters F and g(·). However, such an approach presents
several disadvantages over the chosen one. First of all, it does
not take into account the structure of the problem which is the
well-studied SVM optimization problem for a fixed F. Hence,
by separating the optimization over F and over g(·), we are
able to take advantage of the SVM optimization framework
and any improvements made to SVM solvers. Furthermore,
as stated by Chapelle et al. [27], addressing the nonlinear
SVM problem directly in the primal does not lead to improved

computational efficiency: therefore, no speed gain should be
expected by solving problem (7) directly.

C. Convergence to a local minimum

In this section, we discuss the global convergence of the
proposed Conjugate Gradient algorithm for solving the KF-
SVM problem. The main technical difficulty of this proof of
convergence is the fact that our objective function is itself
the minimum of another optimization problem. For a sake of
clarity and simplicity, we suppose that :
(a) the SVM problem (9) is solved exactly to obtain 0 ≤

α∗ ≤ C/n. This hypothesis ensures us that the gradient
∇J(·) is exact.

(b) X ∈ X , with X being a compact set of Rn×d. For the data
that we consider, e.g numerical signals and images, this
hypothesis is guaranteed by the data acquisition process
which ensures us that the signal and image values are
bounded.

(c) the regularization parameter λ is strictly positive.
(d) the kernel considered is continuous and twice differen-

tiable over the set X . For instance the Gaussian kernel
given in Equation (3) satisfies this condition.

(e) the Frobenius norm is considered as the regularization
term hence, Ω(F) = ||F||2F .

Now, given these hypotheses, the convergence of our algo-
rithm depends on standard convergence conditions of conju-
gate gradients algorithms [32]. Hence, if

1) the level set L := {F|J(F) ≤ J(F0)} is bounded for the
starting point F0 .

2) in some open neighborhood N of L, the objective func-
tion J is Lipschitz continuously differentiable, which
means that if J is in addition twice differentiable :

∃L ∈ R+, ‖∇2J(F)‖2 ≤ L ∀F ∈ N

where ‖ · ‖2 represents the matrix norm induced by the
`2 norm.

3) a line-search satisfying the strong Wolfe’s conditions is
used,

then the conjugate gradient in Algorithm 1 converges globally
[32], i.e. it converges to a local minimum of our objective
function.

The proof that the two conditions hold can be found in
Appendix A. Note that for the sake of simplicity, we have
restricted ourselves to the use of the Frobenious regularizer
and some specific kernels, however this technical result can
be readily extended to other regularizers.

Furthermore, the proven Lipschitz gradient property of J(·)
with respects to kernel parameters (Condition 2) is also of
interest in other problems such as multiple kernel learning
[34] as it allows the use of efficient algorithms such as the fast
iterative shrinkage thresholding algorithms [36] for solving the
convex MKL problem.

D. Complexity in the linear and nonlinear cases

At each iteration of the algorithm, the gradient of J ′(F) +
λΩ(F) is computed and a SVM is solved at each function
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evaluation in the line-search. In this paragraph, we discuss
the complexity of these tasks in both the linear and nonlinear
cases.

In the linear case, the optimization problem can be more
efficiently solved in the primal when the dimension is lower
than the number of training examples, which is the most
frequent situation in sequence labeling. In this case, the SVM
decision function is a separation hyperplane defined by d+ 1
parameters while in the dual, one needs n + 1 parameters to
express the decision function. Several efficient solvers have
been proposed in the literature [27], [37] for solving the SVM
problem in the linear case with p = {1, 2}. In order to have
a differentiable objective function, we have set p = 2. For
computing J ′(F), we used the method proposed by Chapelle
et al. [27], which learns the SVM classifier by using a CG
descent or a Newton descent algorithm. For this linear case,
it can be shown that the gradient of J ′(·) at point F is:

∇J ′(F)i,j = −2C

n

n∑
o=1

yo(Xo−i+1+n0,j)×H(yo, g
∗(X̃o,.))

where g∗ is the optimal linear function for the fixed filtering
matrix F. The complexity of computing the gradient is O(n×
f × d).

In the non linear case, with a Gaussian kernel for instance,
the problem has to be solved in its dual form. In the dual,
the choice of p does not impact on the differentiability of
J ′(F) as long as the optimization problem related to J ′(F) is
strictly convex [31]. The gradient of J ′(·) at a given point F
for a Gaussian kernel is obtained easily by considering all the
parameters related to the SVM as constant w.r.t. to F. Thus,
the gradient becomes

∇J ′(F)i,j =
1

2σ

n,n∑
o=1,p=1

(Xo+1−i,j −Xp+1−i,j) (11)

× (X̃o,j − X̃p,j)K̃o,pyoypα
∗
oα
∗
p

where α∗ are the optimal Lagrangian dual variables of the
SVM solution for X̃ signal given the filter F and K̃ is the
kernel matrix of the filtered samples X̃i,.. The complexity of
computing this gradient is O(n2 × f × d). In practice, since
SVMs have a sparse representation, the gradient computation
reduces to O(n2s×f×d) with ns being the number of support
vectors.

Due to the non-convexity of the objective function, it
is difficult to provide an exact evaluation of the algorithm
complexity. However, we know the complexity of the gradient
computation in the linear and non-linear cases. Moreover, for
each evaluation of J(F) in the line search, a O(n × f × d)
filtering is applied, and a SVM has to be solved (n parameters
in the non linear case and d in the linear case). For further
speed-up, one may use previous result of the SVM solver as
starting point for the new problem and then iterate.

E. Filter regularization

In this section, we discuss the choice of the filter regu-
larization term Ω(F) in Equation (7). This choice is crucial
because learning the FIR filters adds parameters to the learning

problem and regularization is essential in order to avoid over-
fitting. The first regularization term for the filter that we
consider and use in our KF-SVM framework is the Frobenius
norm:

Ω2(F) =

f,d∑
i=1,j=1

F2
i,j

This regularization term is differentiable and its gradient is
easy to compute. Minimizing this regularization term corre-
sponds to minimizing the filter energy , i.e. to maximize the
attenuation of the filters. This attenuation may be seen as a
scaling for each signal in the Gaussian kernel (See Equation
(3)) and minimizing this scaling will lead to a Gaussian
kernel with larger bandwidth, hence to a smooth decision
function. In this sense, the filter matrix can be seen as a kernel
parameter that weights delayed samples and scales channels.
For a given channel, such a sequential weighting is related to
a phase/delay and cut-off frequency of the filter. The intuition
of how this regularization term influences the filter learning
is the following. Suppose we learn our decision function g(·)
by minimizing only J ′(.). Then, the learned filter matrix will
maximize the margin between classes. Adding the Frobenius
regularizer will force non-discriminative filter coefficients to
shrink to zero thus yielding to a reduced impact on the kernel
of the related delayed samples.

Using this regularizer, all filter coefficients are treated
independently, and even if it tends to down-weight some
non-relevant channels, the resulting filter coefficients are not
sparse. If we want to perform a channel selection while
learning the filter F, we have to force some columns of F to
be zero. For that, we can use the `1−`2 mixed-norm defined in
Equation (6) as a regularizer. However, this regularization term
is not differentiable and the solver proposed in Algorithm 1
cannot be used. The AGP methods proposed in Section II-C2
cannot be used either due to the non convexity of the objective
function J ′(·). In order to use the `1 − `2 mixed-norm,
we address the problem through a Majorization-Minimization
algorithm [38] that enables to take advantage of the KF-SVM
solver proposed above. The idea here is to iteratively replace
the function h(·) defined in (6) by a majorization and then
to minimize the resulting objective function. Since h(u) is
concave in its positive orthant, we consider the following linear
majorization of h(·) at a given point u0:

∀u > 0, h(u) ≤ u
1
2
0 +

1

2
u
− 1

2
0 (u− u0)

The main advantage of a linear majorization is that we can re-
use the KF-SVM algorithm. Indeed, at iteration k+1, applying
this linear majorization of h(‖F·,j‖2) around a ‖F(k)

·,j ‖2 yields
to a Majorization-Minimization algorithm for sparse filter
learning, which consists in solving:

min
F(k+1)

{
J ′(F) + λΩd(F)

}
with Ωd(F) =

d∑
j=1

dj

f∑
i=1

F2
i,j and dj =

1

‖F(k)
.,j ‖2

where F(k) represents the solution at iteration k, and Ωd is a
weighted Frobenius norm. Note that this regularization term is
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Algorithm 2 SKF-SVM solver
Set Fi,j = 1/f for i = 1, · · · , f and j = 1, · · · , d
Set dj = 1 for j = 1, · · · , d
repeat

(F,α)← Solve KF-SVM with d column weights
dj ← 1

‖F.,j‖2 for j = 1 · · · d
until Stopping criterion is reached

differentiable and the KF-SVM solver can then be used. We
call this method Sparse KF-SVM (SKF-SVM) and the solver
is detailed in Algorithm 2. We use here a similar stopping
criteria to that in Algorithm 1.

Globally, the use of regularizers such as the two presented
above attenuates the effect of samples or channels that are not
discriminative. Hence, these regularizers and the regularization
parameter λ define an implicit way for selecting the size
f of the filter. If we set f to a sufficiently large value
and select appropriately the regularization parameter λ, for
instance by cross-validation, then the filter coefficients related
to irrelevant samples or channels will tend to shrink towards
zero. Nevertheless, the size of the filter should not be too
large either due to the non-convexity of the problem. Indeed
the proposed initialization, average filtering, might be really far
from the optimal value and get stuck in a local minimum when
the length of the initial average filtering is too important. In
practice, we suggest to select f either by a coarse validation
method or by setting it as the filter length that maximizes
the performance for an averaging filter approach coupled with
an SVM. Our numerical experiments show that these two
approaches usually lead to good classification accuracy.

F. Related works

Works on Common Spatio-Spectral Patterns (CSSSP) [39]
are probably the most similar to the ones proposed in this
paper. In these works, the aim is to learn a linear combination
of channels and samples that optimizes a separability criterion.
But the criterion optimized by CSSSP and KF-SVM are
different: CSSSP aims at maximizing the variance of the
samples for the positive class while minimizing the variance
for the negative class, whereas KF-SVM aims at maximizing
the margin between classes in the feature space. Furthermore,
CSSSP is a feature extraction algorithm that is independent
of the classifier used, while in our case we learn a filter that
is tailored to the (nonlinear) classification algorithm criterion.
This is a similar situation with the recently presented kernel
signal-to-noise ratio [40], in which one maximizes the ratio
between the signal and the noise variances in a kernel feature
space. Furthermore, the filter used in KF-SVM is not restricted
to signal time samples but can also be applied to complex
sequential features extracted from the signal (e.g., PSD). An
application to this kind of complex data is provided in the
experimental section.

KF-SVM can also be seen as a kernel learning method. The
filter coefficients can be interpreted as kernel parameters de-
spite the fact that samples are non-i.i.d.. Learning such kernel
parameters is now a common approach introduced by [41].

While Chapelle et al. minimize a bound on the generalization
error by gradient descent, in our case we simply minimize
the SVM objective function. Also, it is worth noting that
the influence on the parameters differs in both approaches.
More precisely, if we focus on the columns of F, we notice
that the coefficients of these columns act as a scaling of the
channels. For a filter of size 1, our approach would correspond
to adaptive scaling as proposed by [42]. In their work, the
authors jointly learn the classifier and the Gaussian kernel
parameter σ in a SVM framework together with a sparsity
constraint on σ leading thus to automated feature selection.
KF-SVM can thus be seen as a generalization of this approach,
which takes into account sample sequentiality as well.

In addition to being a kernel learning method, KF-SVM
can address the problem of optimal filter design. Efficient
solutions are nowadays available for simple cases such as the
maximization of signal-to-noise ratio (denoising task). As a
consequence, more recent researches focus on the design of
optimal filters for specific situations [43], [44]. However, most
of these works deal with signal denoising, source separation or
frequency estimation. In this work, we focus on the problem of
optimal filter design for sample labeling which, to the best of
our knowledge, has attracted few attentions in recent literature.
Moreover, with respect to previous works on discriminative
filter learning [21]–[23], large margin filtering differs in two
essential aspects: Firstly, we do not consider the full signal
as a single training example but instead consider each sample
as an example. Hence the two problems are rather different,
and the one we address is more related to sample classification
than to full signal classification. Secondly, we do not optimize
the empirical but the structural risk. To the best of our
knowledge, the idea of using a large margin criterion for
optimal filter design is novel and brings several additional
advantages compared to other discriminative criteria. It has
been shown to provide a good predictive generalization and it
implies a convex problem for a fixed filtering. Even if the filter
learning is non-convex, as shown in the sequel, the sample
discrimination –which is the final purpose of the method–
is done by a unique optimal, in structural risk minimization
sense, pair of filter and classifier.

IV. EXPERIMENTAL RESULTS

This section presents the numerical experiments comparing
the different proposed approaches. First we consider numerical
results on a toy dataset containing both convolutional and
additive noise. Then we test the methods on a real life
BCI dataset from the BCI Competition III [4]. Finally, we
extend the methods to a 2-dimensional problem of multi-
spectral remote sensing image segmentation. The MatlabTM

code for all the methods tested in this paper is available in
http://remi.flamary.com/code for the interested reader.

A. Experiment 1: Toy Dataset

This first experiment is designed to provide some insight on
the capabilities of each method to handle feature and channel
weighting/selection. To do this, we use a toy dataset corrupted
by both convolutional and additive noise. Within the data,
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Fig. 2. Projection of the sample on the two discriminative channels for the
linear case (left) and the nonlinear case (Right). Here there is no convolutional
noise to illustrate the original shape of the data.

Fig. 3. Toy dataset generation scheme: First a convolutional noise is applied
to the discriminative feature and then a Gaussian additive noise is added.

TABLE I
LIST OF THE METHODS COMPARED IN OUR EXPERIMENTS.

Method Definition
SVM Classical SVM on the samples.

Avg-SVM SVM on samples filtered by an average filter to limit
the impact of the Gaussian noise (see II-B).

GMM Gaussian Mixture Model classification learned with an
EM algorithm.

WinSVM Classification of a window of samples (see II-C).
SWinSVM∗ Classification of a window of samples with channel

selection (see II-C2).
KF-SVM Kernel FilterSVM, Large Margin Filtering (see III).

SKF-SVM Kernel FilterSVM with channel selection (See III-E).
KF-GMM GMM classifiers on the pre-filtered samples. The filter

is the one obtained by KF-SVM
WinGMKL∗∗ Multiple kernel learning proposed by [35] for feature

selection applied on a window of samples.
∗ only in the linear case. ∗∗ only in the nonlinear case.

discriminative and non-discriminative channels are present. We
investigate the linear and the nonlinear cases separately, as
some of the proposed methods are limited to the linear case.

The generation of the dataset is done in several steps: first
a sequence of labels is created. The length of the regions with
constant label in this sequence follows a uniform distribution
between 30 and 40 samples. This sequence is used to create the
discriminative channels in the signal. Every signal in the toy
dataset contains d channels, among which two are informative
and the others are corrupted by Gaussian noise only. Depend-
ing on their complexity, the discriminative channels cast linear
and nonlinear problems, as shown in Fig. 2. Convolutional
noise is added to the discriminative channels in two ways: first,
a different delay drawn from a uniform distribution on [−τ, τ ]
is applied to every channel and then a moving-average filtering
of size l is applied. Finally, additive Gaussian noise of standard
deviation σn is added to all channels. Figure 3 summarizes
how the noise is applied to the discriminant features.

Table I summarizes the methods used in the experiments.
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0 5 10 15
0.15

0.2

0.25

0.3

0.35

0.4

Size of the convolutional noise filter l

T
e
s
t 
e
rr

o
r 

ra
te

Test error for for a linear problem

 

 

SVM

Avg−SVM

KF−SVM

SKF−SVM

GMM

KF−GMM

WinSVM

SWinSVM

0 2 4 6 8 10

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Size of the convolutional noise filter l

T
e
s
t 
e
rr

o
r 

ra
te

Test error for for a non−linear problem

 

 
SVM

Avg−SVM

KF−SVM

SKF−SVM

GMM

KF−GMM

WinSVM

WinGMKL

Fig. 4. Classification error rate for different convolutional noises in the (a)
linear and (b) nonlinear cases.

The size of the signal is of 1000 samples for both the learning
(training) and the validation sets and of 10000 samples for
the test set. To allow a fair comparison with Avg-SVM, we
selected f = 11 and n0 = 6 for the nonlinear case and f = 15
and n0 = 8 for the linear case. These values correspond to
a good average filtering centered on the current sample. We
fixed the additive noise value at σn = 3 and the possible
delay at τ = 5 samples. The regularization parameters of
all the methods are selected by assessing performance on the
validation set. Experiments were repeated 10 times, and the
test error is the average over the runs. A Wilcoxon’s signed
rank test with a risk of 5% was applied to the results in order
to check the statistical differences between the methods. The
test error used is the number of misclassified samples divided
by the total number of samples in the sequence.

The results are shown in Fig. 4 for both the linear and
nonlinear problems. For the linear problem (Fig. 4(a)), we
can see that all the windowing methods perform well. The
best method is SWinSVM closely followed by the SKF-SVM,
but no statistical differences were observed by applying the
Wilcoxon’s test. These two approaches performing channel
selection lead to a better generalization. Note that WinSVM
performs similarly as KF-SVM which is consistent with the
results in [24] for small dimensional problems. Due to the
Gaussian nature of this dataset, KF-GMM outperforms KF-
SVM.

For the nonlinear problem in Fig. 4(b), statistical differences
were observed between methods, suggesting that the large mar-
gin filtering methods (KF-SVM, SKF-SVM and KF-GMM)
outperformed the rest. Note that the channel selection shows
an improvement when the noise is high (long convolutional
noise filter). The best results are obtained here by KF-GMM
as it uses the best model for the data after denoising. We also
report the poor behavior of WinGMKL, which gives worse
results than a simple average filtering.

The filter length is an important parameter to be selected.
One approach would be to choose the filter length using prior
knowledge about the dataset at hand. For instance, a long filter
might work well for classes changing slowly. Another possible
approach is to select f using standard cross-validation but at
a the expense of a higher computational cost. In Figure 5,
we investigate the impact of the length of the filter parameter
for the above described non-linear toy problem with a size of
the noise convolutional filter of length 5. The test error for a
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Fig. 5. Classification error rate for different filter size in the nonlinear case.
The SVM curve is flat as the samples are not filtered, hence performance does
not depend on the filter size.

varying size of filter f is shown for AVG-SVM and KF-SVM.
We can see that KF-SVM outperforms the other method. In
addition, it exhibits a wider optimal region so it is less sensitive
than the Avg-SVM to the choice of a suitable f value. Note
that AVG-SVM has a unique optimal filter length. Indeed, for
a moving average the filter size adjusts the bandwidth. Hence,
AVG-SVM fits to the data at a specific filter length. In the same
way KF-SVM performance also depends on the filter size.
However it is less sensitive to this parameter than AVG-SVM
because the filter coefficients are optimized in the process.
From this figure, we also notice that selecting the filter length
for our KF-SVM as the one that minimizes the AVG-SVM
performance also leads to nearly optimal classification error
rate.

B. Experiment 2: BCI Dataset

The BCI Dataset considered is one of the problems pre-
sented in BCI Competition III [4]. The objective is to obtain
a sequence of labels out of brain activity signals for three
human subjects. The data consists of 96 channels containing
Power Spectral Density (PSD) features for different band-pass
(three training sessions and one test session, with n ' 3000
samples per session) and three possible labels (left arm,
right arm or a word). We deal with the several classes in the
dataset through a classical One-Against-All strategy. For the
non-linear approaches, in order to make the problem tractable
despite the large number of samples, we use as a training set
only a randomly selected subset of the available dataset (of
about 30%). The regularization parameters are tuned using a
grid search validation strategy on the third training session. In
these experiments, n0 has been set to 0, we want to predict
the current mental task with no delay.

Our method is compared to the best BCI competition results
and to the SVM without filtering. Here we do not provide
performances for GMM and FilterGMM due to their poor per-
formances that probably comes from the high dimensionality
of the problem. We could not obtain WinGMKL results in a
reasonable time so this approach has not been reported either.

The test error for different methods and filter lengths is
given in Table II. For the linear models, the best methods for
all tested filter sizes are KF-SVM, SKF-SVM and SWinSVM.
This shows the advantage of taking into account the neigh-
borhood of the samples for decision and the importance of a

Fig. 6. QuickBird scene of suburbs of Zurich (left) and labeled pixels (right).
Legend: dark green = trees; light green = meadows; black = speedway;
brown = roads; orange = residential buildings; red = commercial buildings;
blue = shadows.

proper regularization. Longer filtering provides the best results,
especially in conjunction with regularization that helps to
avoid over-fitting (indeed, for f = 50, approximately 5000
filter coefficients are learned based on approximately 10000
sample). The best overall results are obtained by KF-SVM
and SKF-SVM with the filter length f = 50.

The results follow the same trends for the nonlinear models,
showing that for this task a linear classifier is sufficient.
However, one should keep in mind that, in these cases, the
decision functions are learned from only 30% of the samples.
In this case, the Avg-SVM performs well, since the noise is in
the high frequencies and the non linearities that can be induced
by over-filtering are handled by the Gaussian kernel.

C. Experiment 3: Multispectral Image Segmentation

The method we promote for learning a large margin filtering
may be easily extended to the 2-dimensional case. In this ex-
periment, we apply it to the segmentation of remotely-sensed
multispectral images. Nowadays, sensors mounted on satellite
or airborne platforms may acquire the reflected energy by the
Earth with high spatial detail and in several wavelengths or
spectral channels. This allows the detection and classification
of the pixels in the scene. The obtained classification maps
are then used for management, policy making and monitor-
ing. In multispectral imagery, the pixels are multidimensional
(RGB and near-infrared bands) and hence the filtering is a
2-dimensional convolution of the image band-by-band. We
tested our approach on a Very High Resolution (VHR) image
acquired by the sensor QuickBird (spatial detail of 0.6m) over
the city of Zürich, Switzerland (see Fig. 6). The considered
dataset represents a residential area in the South-West part of
the city. Seven classes were labeled by photo-interpretation.
The main challenge is to distinguish between the two classes
of buildings and the two classes of roads by applying spatial
filtering, because the spectral difference between these couples
of classes is low.

Classification results when using a Gaussian kernel are
shown in Table III. SKF-SVM is not applied to this dataset,
since sparse selection is not necessary for such small di-
mensional data (d = 4). We computed the test error rate
One-Against-All and the estimated Cohen’s kappa coefficient,
which is a more appropriate measure to evaluate the classifi-
cation accuracy in unbalanced class problems (best when 1).
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TABLE II
CLASSIFICATION ERROR RATE FOR THE BCI DATASET FOR DIFFERENT METHODS, AND FILTER LENGTH f . RESULTS ARE GIVEN FOR THE LINEAR MODEL

(TOP) AND FOR THE NONLINEAR MODEL (BOTTOM). THE THREE BEST METHODS ARE IN BOLD. FOR THE SAKE OF PROPER COMPARISON, NOTE THAT
THE BEST COMPETITION RESULTS ARE (0.2040, 0.2969, 0.4398 AND 0.3135 FOR THE AVERAGE).

f = 10 f = 20 f = 50
Method S1 S2 S3 Avg S1 S2 S3 Avg S1 S2 S3 Avg

Linear model
SVM 0.254 0.377 0.553 0.395 0.254 0.377 0.553 0.395 0.254 0.377 0.553 0.395
Avg-SVM 0.228 0.342 0.534 0.368 0.193 0.298 0.530 0.340 0.133 0.236 0.475 0.282
KF-SVM 0.205 0.304 0.512 0.340 0.185 0.269 0.429 0.294 0.126 0.231 0.423 0.260
SKF-SVM 0.205 0.294 0.473 0.324 0.182 0.262 0.481 0.308 0.128 0.222 0.438 0.263
WinSVM 0.214 0.316 0.540 0.357 0.196 0.280 0.534 0.337 0.146 0.223 0.482 0.284
SWinSVM 0.215 0.314 0.470 0.333 0.196 0.264 0.428 0.296 0.146 0.218 0.460 0.274

nonlinear model (Gaussian kernel)
SVM 0.239 0.357 0.481 0.359 0.239 0.357 0.481 0.359 0.239 0.357 0.481 0.359
Avg-SVM 0.217 0.331 0.470 0.340 0.197 0.295 0.448 0.313 0.128 0.234 0.450 0.271
KF-SVM 0.205 0.300 0.489 0.331 0.173 0.266 0.482 0.307 0.158 0.227 0.445 0.277
SKF-SVM 0.206 0.307 0.489 0.334 0.174 0.260 0.446 0.293 0.114 0.232 0.471 0.273
WinSVM 0.210 0.324 0.477 0.337 0.174 0.281 0.448 0.301 0.134 0.232 0.440 0.269

Two configurations are tested: 7 classes and 6 classes. For the
last configuration, class ’Residential’ and ’Commercial’ are
merged as ’Building’ (see Figure 6 for the list of classes).
For the 7–classes setting, the inclusion of spatial information
strongly improves the results of the SVM. In this case, learning
the filter provides better results in comparison with other
approaches. Regarding the 6–classes setting, WinSVM gives
slightly better results than KF-SVM. Note that the interest
of KF-SVM lies in the learned filters that can be interpreted
or used as pre-processing for other classifications, whereas
Win-SVM with a Gaussian kernel gives rise to a black-box
approach.

These results show the interest of learning a large margin
filtering when the overlap between the classes is important. But
the most important aspect of our approach is the fact that the
filters are interpretable. For instance, it is possible to compute
the Fourier transform of the learned filters. Figure 7 shows
the magnitude of the Fourier transform of the red component
filter for classes ‘Residential’ and ‘Commercial’. First, the
algorithm nicely learns low-pass filters, which is due to the
fact that the noise is mainly in the high spatial frequencies.
Besides, we can see that the cut-off frequency is different
for each class. The filter for houses cuts at 5 m (0.2 m−1)
whereas for commercial buildings, the cut-off frequency is
10 m (0.1 m−1). This will promote larger spatial filtering
for commercial buildings than for the residential ones, as one
intuitively would expect: commercial buildings are usually
bigger than residential ones, and by learning the filtering we
automatically find this discriminant feature from the data.

V. CONCLUSION

In this work, we addressed the problem of multi-channel
signal sequence labeling in the presence of additive and
convolutional noise. At first, several methods based on filter-
ing preprocessing and time-window classification have been
reviewed. Afterwards, we introduced a general framework for
learning large-margin filtering jointly with a sample classifier.
Depending on the regularization term used, this framework
allows one to achieve adaptive scaling of the channels or chan-
nel selection. For solving the optimization problem yielded
by the proposed framework, we have considered a conjugate

TABLE III
RESULTS IN IMAGE SEGMENTATION WITH A GAUSSIAN KERNEL.

ONE-AGAINT-ALL ACCURACY AND KAPPA COEFFICIENT.

Method Classes Filter
size

Training
Pixels

Error
rate

Kappa

SVM
7 9 ∼ 5000

0.249 0.685
AvgSVM 0.163 0.796
WinSVM 0.170 0.785
KF-SVM 0.147 0.816

SVM
6∗ 9 ∼ 5000

0.170 0.772
AvgSVM 0.105 0.860
WinSVM 0.083 0.889
KF-SVM 0.085 0.885

∗ ‘Residential’ and ‘Commercial’ are merged into one ’Building’ class.
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Fig. 7. Magnitude of the spatial Fourier transform on the Red component
large margin filtering for the ’House’ and ’Commercial’ classes. The bold
black lines correspond to the −3dB attenuation.

gradient algorithm which provably converges towards a local
minimum of the problem. We empirically compared the dif-
ferent approaches on a non-linear toy example and on a real
life BCI classification problem, and these experiments showed
the benefits of learning a large margin filtering. Finally, we
extended our approach to a multidimensional image segmen-
tation problem and the interpretability of the learned filters
have been evaluated by visualizing theirs Fourier transforms.

In future work, we plan to propose new regularization terms
that can bring prior information to the problem. For instance,
since noise typically appears in the high frequency range,
one could design regularizers that promote learning low pass
filters. Another interesting problem is the one of large scale
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learning. The fact that we have to iteratively solve a SVM
makes large-scale problem hardly tractable. We will investigate
the use of a one-pass SVM solver such as the one of Bordes
al. [45] instead of an exact SVM solver.

APPENDIX
GLOBAL CONVERGENCE OF THE CG ALGORITHM

In this appendix, we prove the conditions 1 and 2 for
conjugate gradient algorithm convergence as described in sec-
tion III-B. Remind that some hypotheses and the convergence
conditions are given in section III-C.

First, we address the condition 1 and we prove that the level
set L := {F|J(F) ≤ J(F0)} for a fixed initial value F0 is
bounded.

Proof: First, let F0 be some fixed initial value and L :=
{F|J(F) ≤ J(F0)} a level set. We know that ∀o, p, |K̃o,p| ≤
1, |α∗p| ≤ C

n due to the SVM formulation in Equation (10)
and |yp| = 1. We can derive that |K̃o,pyoypα

∗
oα
∗
p| ≤ C2

n2

and that
∑
o,p |K̃o,pyoypα

∗
oα
∗
p| ≤ C2. Then |J ′(F)| = | −

1
2

∑
o,p K̃o,pyoypα

∗
oα
∗
p+
∑
iα
∗
i | ≤ C2

2 +C that is |J ′(F)| is
bounded. We know that J(F) = J ′(F)+λ||F||2F so if F ∈ L,
we can infer that −C

2

2 − C + λ||F||2F ≤ J(F) ≤ J(F0) ≤
C2

2 +C+λ||F0||2F hence λ||F||2F ≤ C2+2C+λ||F0||2F . This
means for all ∀F0 such that ‖F0‖2F <∞, the norm of F ∈ L
is bounded, so the level set L is bounded and Condition 1
holds.

Secondly we prove that the norm of the Hessian matrix of
J(F) is bounded with F ∈ N with N an open neighborhood
of L. In a nutshell, the proof proceeds by showing that for all
possible F, the components of the Hessian are also bounded.

Proof: Firstly, let us note that if we choose N :=
{F|J(F) < J(F0) + ε} with ε > 0 then N is an open
neighborhood of L. Note that similarly we can define M :=
{F|J(F) ≤ J(F0)+ε} the closure of N so that L ⊂ N ⊂M.
Using a similar approach than in the preceding proof, one can
show that for F ∈ M, λ||F||2F ≤ C2 + 2C + λ||F0||2F + ε
which implies that M is a bounded set. Finally F ∈ N lies
in a closed and bounded set of the metric space Rf×d and
we can use the Bolzano-Weierstrass theorem to conclude that
F ∈ N lies in a compact.
J is twice differentiable because both J ′ and || · ||2 are.

Indeed differentiability of ∇FJ
′ given equation (11) w.r.t. F

comes from (i) α∗(F) is differentiable [41] and (ii) it is a
sum of differentiable terms. Then we express the components
of this matrix ∂2J(F)

∂Fi,j∂Fi′,j′
= 2λ + 1

2σQ(i,j),(i′,j′) with
Q(i,j),(i′,j′) equal to:

n,n∑
o=1,p=1

∆xi,jo,p∆xi
′,j′

o,p (1− 1

2σ
∆x̃jo,p∆x̃j

′

o,p)K̃o,pyoypα
∗
oα
∗
p

+ xi,jo,px
i,j
o,pK̃o,pyoyp

(
α∗p

∂α∗o
∂Fi′,j′

+ α∗o
∂α∗p
∂Fi′,j′

)
with ∆xi,jo,p = Xo+1−i,j −Xp+1−i,j (12)

and ∆x̃jo,p = X̃o,j − X̃p,j

Now, by using results from [46] we know that

∂α∗

∂Fi,j

∣∣∣∣
F

= −Ā∂K̃sv

∂Fi,j
αsv(F) (13)

is one column of the Jacobian matrix corresponding to Fi,j
where Ā is the inverse of a matrix continuously dependent
on F through the positive definite Gram matrix. We aim at
showing that each component of this Jacobian matrix defined
by Equation (13) is bounded. For this purpose, we first remark
that Ā is continuous with respect to F as the inverse of a
matrix continuous with F. Then, ∂K̃sv

∂Fi,j
is the differentiate

of the kernel matrix restricted to the support vectors sv (α∗

coefficients such that 0 < α∗i < C/n) and is continuous by
hypothesis. The function αsv(F) represents the values of the
support vectors for the SVM problem with a given F, and
is continuous with respect to F as it is differentiable. This
means that the components of the Jacobian matrix Jα are
continuous functions with respect to F. Then, since F lies in a
compact set, the components ∂α∗o

∂Fi,j
of the Jacobian matrix Jα

are bounded. Moreover, X̃ is bounded as it is a finite sum and
product of bounded terms. Then we can see in Equation (12)
that the components of the Hessian matrix are composed of
sums and multiplication of bounded terms, so we can conclude
that these components are bounded. Thus the Frobenius norm
of the Hessian ||∇2J(F)||F is itself bounded because it is a
finite sum of bounded terms. Using results from [47] we can
conclude that:

∃L such that ||∇2J(F)||2 ≤ ||∇2J(F)||F ≤ L.

Finally, the second condition holds as the objective function
J is continuously differentiable and his Hessian matrix has
bounded eigenvalues.
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Models. Springer, 2005.

[8] Y. Altun, I. Tsochantaridis, T. Hofmann et al., “Hidden Markov support
vector machines,” in International Conference in Machine Learning,
vol. 20, 2003, p. 3.

[9] A. Sloin and D. Burshtein, “Support vector machine training for
improved hidden Markov modeling,” IEEE Transactions on Signal
Processing, vol. 56, no. 1, p. 172, 2008.

[10] J. Bloit and X. Rodet, “Short-time Viterbi for online HMM decoding:
Evaluation on a real-time phone recognition task,” in ICASSP, 2008.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. YY, ZZZZ 12

[11] A. Bordes, N. Usunier, and L. Bottou, “Sequence labelling svms
trained in one pass,” in Machine Learning and Knowledge Discovery
in Databases: ECML PKDD 2008, ser. Lecture Notes in Computer
Science, LNCS 5211, W. Daelemans, B. Goethals, and K. Morik,
Eds. Springer, 2008, pp. 146–161. [Online]. Available: http:
//leon.bottou.org/papers/bordes-usunier-bottou-2008

[12] T. Pistohl, T. Ball, A. Schulze-Bonhage, A. Aertsen, and C. Mehring,
“Prediction of arm movement trajectories from ecog-recordings in
humans,” Journal of Neuroscience Methods, vol. 167, no. 1, pp. 105–
114, Jan. 2008.

[13] S. Salenius, R. Salmelin, C. Neuper, G. Pfurtscheller, and R. Hari,
“Human cortical 40 Hz rhythm is closely related to EMG rhythmicity,”
Neuroscience letters, vol. 213, no. 2, pp. 75–78, 1996.

[14] X.-Y. Wang, T. Wang, and J. Bu, “Color image segmentation using pixel
wise support vector machine classification,” Pattern Recognition, vol. 44,
no. 4, pp. 777–787, 2011.

[15] D. Chai, H. Lin, and Q. Peng, “Bisection approach for pixel labelling
problem,” Pattern Recognition, vol. 43, no. 5, pp. 1826–1834, 2010.

[16] D. Puig and M. Garcia, “Automatic texture feature selection for image
pixel classification,” Pattern Recognition, vol. 39, no. 11, pp. 1996–2009,
2006.

[17] F. Pacifici, M. Chini, and W. Emery, “A neural network approach using
multi-scale textural metrics from very high-resolution panchromatic
imagery for urban land-use classification,” Remote Sens. Environ., vol.
113, no. 6, pp. 1276–1292, 2009.

[18] J. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification of
hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–490,
2005.

[19] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson,
“Spectral and spatial classification of hyperspectral data using SVMs
and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 11, pp. 3804 – 3814, 2008.

[20] D. Tuia, F. Pacifici, M. Kanevski, and W. Emery, “Classification of
very high spatial resolution imagery using mathematical morphology and
support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 11, pp. 3866–3879, 2009.

[21] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
pp. 255–258, 1995.

[22] B. de Vries and J. C. Principe, “The Gamma model – a new neural
model for temporal processing,” Neural Networks, vol. 5, no. 4, pp.
565–576, 1992.

[23] S. Lawrence and A. C. Tsoi, “The Gamma MLP for speech phoneme
recognition,” in IEEE Workshop on Neural Networks for Signal Pro-
cessing VII. MIT Press, 1996, pp. 785–791.
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